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Interface scaling in the contact process
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A correspondence between lattice models with absorbing states and models of pinned interfaces in random
media can be established by defining local height variablesh(x,t) as integrals of the activity at pointx up to
time t. Within this context we study the interface representation of a prototypical model with absorbing states,
the contact process, in dimensions 1–3. Simulations confirm the scaling relationbW512u between the
interface-width growth exponentbW and the exponentu governing the decay of the order parameter. A scaling
property of the height distribution, which serves as the basis for this relation, is also verified. The height-height
correlation function shows clear signs of anomalous scaling, in accord with Lo´pez’ analysis@Phys. Rev. Lett.
83, 4594~1999!#, but no evidence of multiscaling.
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I. INTRODUCTION

Scaling and criticality in nonequilibrium systems contin
to be of great interest in statistical physics. Among the va
ous classes of systems that have been subject to inten
study are models of growing interfaces@1–5#, and absorbing-
state phase transitions, typified by directed percolation~DP!
and the contact process@6–9#. The latter class of model
generally involve variabless i(t)51(0) indicating the pres-
ence~absence! of activity at sitei at timet. Introducing a set
of height variableshi(t)5*0

t s i(t8)dt8 establishes a connec
tion between the particle model and a corresponding in
face model. The absorbing state of the particle model~global
absence of activity! corresponds to pinning of the interfac
At the critical point, the scaling properties of the interfa
can be related to those of the original particle model. It
therefore of considerable interest to investigate interface
namics at an absorbing-state critical point.

Absorbing-state phase transitions have also been linke
self-organized criticality~SOC! in sandpile models@10–12#,
as have driven interface models@13–18#. @The latter connec-
tion is established by defininghi(t) as the number of top
plings at sitei up to timet.# It turns out that the interface o
the Bak-Tang-Wiesenfeld model@19# is described by an
Edwards-Wilkinson equation with columnar noise@17,18#.
In view of the connections between absorbing-state ph
transitions, SOC, and surface growth, it is worthwhile
study the dynamics of the interface representation o
simple model in the DP class, the contact process~CP!. Pre-
cise results on the scaling properties of the CP interf
should prove useful when trying to assign interface mod
~or height representations of other models, such as sandp!
to universality classes.

In this paper we examine the dynamics of the cont
process in dimensions 1–3, studying the interface width
the height-height correlation function, as well as the hei
probability distribution. In Sec. II we define the model a
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then present a brief discussion of the associated contin
equation, and of a scaling theory. Numerical results are p
sented in Sec. III. Section IV contains a brief summary.

II. MODEL

The contact process is a simple particle system~lattice
Markov process! exhibiting a phase transition to an absor
ing ~frozen! state at a critical value of the creation rate@20#.
This model belongs to the universality class of directed p
colation@6# and Reggeon field theory@21#, and is pertinent to
models of epidemics@8#, catalysis@22#, and damage spread
ing @23#, among many others. In the CP each site of
hypercubic latticeZ d is either vacant or occupied by a pa
ticle. Particles are created at vacant sites at rateln/2d,
wheren is the number of occupied nearest neighbors, and
annihilated at unit rate, independent of the surrounding c
figuration. The order parameter is the particle densityr; the
vacuum state,r50, is absorbing. Asl is increased beyond
lc , there is a continuous phase transition from the vacu
to an active state; forl.lc , r;(l2lc)

b in the stationary
state. In one dimension,lc.3.297 848.

There are a number of ways~equivalent as regards scalin
behavior! of implementing the CP in a simulation algorithm
this work follows the widely used practice of maintaining
list of all occupied sites. In this study the initial condition
always that of all sites occupied. Subsequent events invo
selecting~at random! an occupied sitex from theNp sites on
the list, selecting a process@creation with probabilityp
5l/(11l), annihilation with probability 12p#, and, in the
case of creation, selecting one of the 2d nearest neighborsy
of x. ~The creation attempt succeeds ify is vacant.! The time
incrementDt associated with an event is 1/Np , whereNp is
the number of occupied sites immediately prior to the eve
A trial ends when all the particles have vanished, or at
first event with time>tm , a predetermined maximum time

The important scaling laws pertinent to the critical conta
process on a lattice ofLd starting with all sites occupied ar
~1! the mean survival timet}Ln uu /n', and ~2! the average
particle density decaying as a power law,r(t)}t2u for 1
,t,t. ~In practice, the power law is already found fort
7632 ©2000 The American Physical Society



si
ab
c-
re

al

it
ta

de

d
e

to

ht
an
io
s

t

f-
a

a
rm

e
te

ce.
n-

for
us

.,

es

ted
s,

Eq.
o-

er
ro-
flat

at

PRE 62 7633INTERFACE SCALING IN THE CONTACT PROCESS
'2.! In one dimension,n uu /n'.1.5808 andu.0.1595@24#.
Occupied sites represent activity, which spreads from

to site. ~The absence of any activity corresponds to the
sorbing state.! In a growing surface or driven interface, a
tivity corresponds to the motion of the interface. We the
fore define theheight hi(t) at sitei as the amount of time~up
to time t) that site i has been occupied. In our numeric
studies we use a real-valued height~recall that time is not
restricted to integer values in our implementation!. By keep-
ing a record of the last timet i at which the state of sitei
changed, we are able to evaluatehi(t) at any moment in the
simulation.~While the results reported here are for realh, we
find the same scaling properties for integerh.! The surface
hi(t) may be thought of as a driven interface. Since the cr
cal contact process must eventually enter the absorbing s
the interface, in this analogy, will eventually be pinned.

The large-scale properties of the CP and related mo
such as DP can be described via a field theory~so-called
Reggeon field theory! framed in terms of a coarse-graine
density r(x,t)>0 @21#. Retaining only relevant terms, th
stochastic partial differential equation forr(x,t) reads

]r

]t
5¹2r2ar2br21h~x,t !. ~1!

Here h(x,t) is a Gaussian noise with zero mean and au
correlation

h~x,t !h~x8,t8!5Gr~x,t !dd~x2x8!d~ t2t8!. ~2!

In our continuum description, the height is given by

h~x,t !5E
0

t

dt8r~x,t8!. ~3!

Integrating Eq.~1! from time zero to timet, we obtain

]h

]t
5¹2h2ah2bE

0

tS ]h

]t8
D 2

dt81z~x,t !, ~4!

with the noise autocorrelation

z~x,t !z~x8,t8!5Gdd~x2x8!h~x,t,!, ~5!

wheret,[min(t,t8). Thus the equation governing the heig
includes a nonlinear memory term and a noise with nonv
ishing correlations between different times. This equat
does not seem to shed much light on the scaling propertie
the interface. Rather, the relation betweenh and the density
in the contact process, Eq.~3!, yields some properties tha
are not immediately obvious from Eq.~4!, for example, that
]h/]t>0, and that the nonlinear term is relevant ford,dc
54. In any event, Eq.~4! does serve to point up some di
ferences between the CP interface and conventional surf
growth models such as the Edwards-Wilkinson@25# or
Kardar-Parisi-Zhang equations@26#. First, the linear ‘‘drive’’
term @2ah(x,t) with a,0 in the active regime# is propor-
tional to the local height and so cannot be transformed aw
Second, in the active state, the moduli of the last three te
on the right-hand side~RHS! of Eq. ~4! grow without limit,
suggesting that¹2h does as well, so that the width of th
active phase never saturates. We note that it is not our in
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tion in this paper to simulate Eq.~4! directly; rather, we shall
study the dynamics ofh(x,t) via simulations of the CP.

We turn now to a simple scaling analysis of the interfa
At its basis lies a scaling hypothesis for the probability de
sity p(h;t) of the heighth ~at any lattice site! at time t: the
time dependence of this density enters only through themean

height h̄(t). The conjectured scaling property is

p~h;t !5
1

h̄~ t !
P„h/h̄~ t !…, ~6!

where the scaling functionP>0 with *P(u)du51, and the
prefactor guarantees normalization. We have no proof
this scaling hypothesis. While it is known that an analogo
scaling relation holds for the probabilityp(r;t) of the local
particle densityin the critical CP@9#, it is not obvious that
the scaling property forr implies the same forh. @The prob-
lem is thath(x,t) is the sum of many random variables, i.e
r(x,t8) for t8,t, which are, however, strongly correlated.#

It follows from Eq. ~6! that the moments ofh all scale
with the mean heighth̄n5ūn@ h̄(t)#n with ūn thenth moment
P. In particular, the mean-square width

W2~ t,L !5var~h!;@ h̄~ t !#2, ~7!

if Eq. ~6! holds. On the other hand, we have that for tim
t,t in the critical contact process,

h̄~ t !5E
0

t

dt8r~ t8!;t12u, ~8!

which immediately implies thatW2;t2bW with bW512u.
In surface growth studies the crossover time is expec

to scale ast3;Lz; for a process in the DP universality clas
we may writez5n uu /n' ~clearly t3 andt should scale with
the same exponent!. Then the roughness exponenta, defined
via W2(t,L)5Wsat

2 (L);L2a for t@t3 , is given by the scal-
ing relation a5bWz5(12u)n uu /n' . It is perhaps worth
stressing that the expressions relatinga andbW to DP expo-
nents depend on the validity of the scaling hypothesis
~6!, which should be tested. Inserting the known DP exp
nent values, scaling theory yieldsa.1.3287, 0.97, 0.51, and
zero for dimensions 1, 2, 3, and 4, respectively. In oth
words, the interface associated with the critical contact p
cess is super-rough in one dimension, and asymptotically
in d>dc54, whereu51.

The family of height-difference correlation functions

Gq~r ,t ![uh~x,t !2h~x1r ,t !uq ~9!

is also much studied in surface growth. Starting with a fl
interface att50, we expect power-law growthGq;r qaq for
r ,j(t);t1/z, the time-dependent correlation length. Ifaq
depends onq the interface is said to be multiaffine. Forr
.j, Gq will saturate; in particular,G2 should approach
W2(t,L);t2bW;j2a for r'j andt!t3 . Sincej is the only
length scale relevant to correlations at short times~i.e., for
t,t3 , so that the system sizeL does not come into play!, it
is reasonable to expect the scaling form

G2~r ,t !5j2aG~r /j!, ~10!
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where the scaling functionG(x);x2a2 for small x and is
constant for largex. The casea25a is referred to as ‘‘con-
ventional’’ scaling whilea2,a is characterized as ‘‘anoma
lous’’ scaling @4,27#.

III. SIMULATION RESULTS

We study the standard CP on hypercubic lattices w
periodic boundary conditions. All interface properties are
rived from the heighthi(t) variables defined in Sec. II. In
one dimension, we determined the square widthW2(t,L) for
rings of L5500, 1000, 2000, and 5000 sites, in samples
2000, 1000, 1000, and 400 trials, respectively. The ma
mum time ranged from about 1.63105 for L5500 to 8.8
3106 for L55000. All simulations were performed at th
critical point,lc.3.297 848. In the contact process, interf
cial properties can be studied over the full sample, or ove
sample restricted to those trials that survive to timet. When

FIG. 1. Interface of the critical contact process in a system
200 sites, shown at intervals of 5000 time units.

FIG. 2. Scaled mean-square width versus reduced time for
tem sizesL5500, 1000, 2000, and 5000.
h
-

f
i-

-
a

a trial enters the absorbing state,W2 naturally remains fixed
for all subsequent times, and since all trials do eventua
reach the absorbing state in the critical contact process,
interface width saturates for larget. If we restrict the sample
to surviving trials, however, there is no saturation. It is im
portant to note that the same scaling laws apply in eit
case.~The power-law growth regime, for example, corr
sponds to times less thant, for which all trials still survive.!

Figure 1 shows a series of snapshots of the interface
single trial withL5200, at intervals of 5000 time units. Th
progressive roughening of the interface, without evidence
saturation, is apparent. Figure 2 is a scaling plot of the squ
width, averaged over all trials, i.e.,W2(L,t)/L2a versus t̃
[t/Lz, using the exponentsa51.328 andz51.5808 ex-
pected for DP in 111 dimensions. There is a near-perfe
data collapse fort̃ .1023. The power-law portion of the
graph (1023< t̃<0.05) yields the growth exponentbW
50.839(1), in good agreement with the value 12u

f

s-

FIG. 3. Scaling plot of the height probability distribution~un-
normalized! for L51000 at~from top to bottom on left-hand side!
times 500, 1000, 2000, 5000, 104, 23104, 53104, and 105.

FIG. 4. Scaling plot of the height probability distributions~un-
normalized! for L51000~dashed lines! andL55000~solid lines! at

reduced times~from top to bottom on left-hand side! t̃ 50.142,
0.71, and 1.42.
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50.8405 expected on the basis of the scaling argument.~Fig-
ures in parentheses denote statistical uncertainties.! Analysis
of the saturation width yieldsWsat

2 (L);L2a with a
51.325(15).

In Fig. 3 we test the scaling assumption for the heig
probability distribution p(h) by plotting t0.84p(h) versus
h/t0.84. ~Recall thath̄ is expected to grow proportionally t
t12u5t0.84.! In this system ofL51000 sites, there is a nea
perfect data collapse, in accord with Eq.~6!, for times be-
tween 500 and 104. For t523104 we begin to note a depar
ture from scaling, which becomes more pronounced at l
times. Note thatt523104 corresponds to lnt̃521, which is
whereW2 begins to depart noticeably from a power law
Fig. 2. Analysis ofp(h) for L55000 yields similar results
The form of the scaling function for a given reduced timet̃
is independent of the system size, as shown in Fig. 4, wh
compares height probability distributions for systems
1000 and 5000 sites at times corresponding to the samet̃ .

FIG. 5. Scaled height-height correlation function versusr /t1/z

for L51000. The topmost curve comprises collapsed data for tim
500, 1000, 2000, 5000, and 104; below it lie results fort523104

~solid curve!, 53104 ~dotted curve!, and 105 ~dashed curve!.

FIG. 6. Growth of the mean-square gradients(t)5(¹h)2 in
systems withL51000(1), 2000 ~dashed line!, and 5000~solid
line!.
t

er

h
f

The height-height correlation functionG2 in a system of
1000 sites is shown in Fig. 5, which is a double-logarithm
plot of G2* [G2 /t2bW versusr * [r /t1/z. There is a perfect

data collapse fort5500, . . . ,104 ~reduced times 1022< t̃
<0.2), with a power-law portionG2;r 2a2 with a2.0.625.
At later timesG2* does not collapse, principally because t
square width has begun to saturate~it no longer grows pro-
portionally tot2bW). The value ofa2 is insensitive to system
size. ForL55000 we obtaina250.623(2) for t523105,
and 0.644 fort553105. Thus we may, with a high degre
of confidence, adopt the estimatea250.63(3), clearly much
smaller than the roughness exponenta51.33 found in the
analysis of the square width, indicating that this on
dimensional system exhibits anomalous scaling. Recen
López argued that anomalous surface roughening is ass
ated with a diverging height gradient@27#. In view of the
growing spikes evident in the profiles shown in Fig. 1, th
association seems very probable in the present instance
deed, the mean-square height gradient

s
FIG. 7. Scaled mean-square width versus reduced time in

dimensions; system sizesL532, 64, 128, and 256.

FIG. 8. Growth of the mean-square gradients(t)5(¹h)2 in the
two-dimensional system withL5256.
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s~ t !5~¹h!2 ~11!

diverges as a power law~see Fig. 6!. We finds(t);t2k, with
k50.439(1) for L51000, 0.4335~4! for L52000, and
0.4337~4! for L55000; we adoptk50.4336(4) as our bes
estimate. From Lo´pez’ analysis, one expects

aq5a2zk. ~12!

Inserting our result for k and the DP valuesa
51.328 67(14) andz51.5808(1) in the RHS, we obtai
aq50.643(1), in good agreement with the result found fro
analysis of the correlation function.

We also studied the generalized height-height correla
functionGq @Eq. ~9!# for q51/2, 1, 3/2, 2, and 3, in a system
with L51000, at t5104, and found that the function
@Gq#1/q are identical and giveaq.0.62. We may therefore
conclude that the DP interface is self-affine, not multiaffin

In two dimensions we studied systems of up to 2
3256 sites at the critical pointlc.1.6488. The curves fo
W2 again show a good collapse~see Fig. 7!, and the derived
exponents are in very good agreement with the expected
ues. Specifically, we finda50.97(1), bW50.550(5), and
z51.765(10). Scaling relations combined with known D
exponent values yielda50.970(5) andb50.549(2), while
current best estimates givez5n uu /n'51.766(2) for DP in
211 dimensions@28–31#.

For smaller system sizes we observe a transient inW2 and
all other measured quantities, which does not appear in
dimension. Anomalous roughening is also seen in two
three dimensions. Figure 8 showss(t) growing ;t2k with
k50.33(1). Theheight-height correlation function exhibit
a good collapse, as shown in Fig. 9; the initial power-l
growth yieldsa250.385(5); thus the scaling relation Eq
~12! is well satisfied:a22a1zk50.00(3).

We also determined the interface exponents in three
mensions (lc.1.3169, system size 503 sites, maximum time
104), though to somewhat lower precision, owing to t
larger computational demand. The scaling relation yie

FIG. 9. Scaled height-height correlation function versusr /t1/z

for L5256 in two dimensions. The curves~bottom to top! corre-
spond tor 52, 4, 8, and 16.
n

.

al-

ne
d
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s

bW512d50.274(1), while our simulation results forW2

give bW50.27(1). We find a50.51(1), z51.90(5), and
k50.22(1). Together with Eq. ~12!, these yield a2

50.09(2). Our results for critical exponents are collected
Table I.

IV. SUMMARY

Defining an interface representation for the contact p
cess, we verified the expected scaling relationbW512u in
dimensions 1–3, and the scaling property of the height pr
ability distribution in one dimension. The local roughne
exponenta2 is smaller than the global valuea, indicating
anomalous surface growth. This anomalous scaling is
tended by a diverging local slope,s(t)5(¹h)2;t2k. Our
results fork are consistent with the scaling relation Eq.~12!
derived by López. There is, on the other hand, no eviden
of multiaffinity in this process.

An interesting point is that the process continues to
hibit anomalous scaling ford52 and 3, even thougha,1 in
these cases. While it was pointed out some time ago thaa
.1 implies anomalous growth@32#, this property appears to
be an intrinsic feature of the contact process~and, by exten-
sion, of other models in the DP universality class!. Finally,
we note that we have introduced two critical exponentsa2
and k, and only one scaling relation between them. W
therefore have an independent exponent,k say, that cannot
be related to the standard DP exponents in any way. A v
interesting theoretical task is that of computingk in an ep-
silon expansion around the upper critical dimensiondc54.
Our guess is that this anomalous exponent is related to
renormalization of a composite operator not considered
far in the analysis of Reggeon field theory, but this issue
beyond the scope of this paper, and will be studied e
where. It is interesting to note, in this connection, that Bh
tacharjeeet al.showed that for an interface model exhibitin
super-roughening~i.e., a>1) there exist generic nonpertu
bative infrared singularities inaccessible to standard dyna
cal renormalization group analysis@33#.
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TABLE I. Summary of interface-growth critical exponents fo
the contact process obtained in our simulations (d51 –3). Figures
in parentheses denote uncertainties.

Dimension a a2 bW k z

d51 1.33~1! 0.63~3! 0.839~1! 0.4336~4! 1.58
d52 0.97~1! 0.385~5! 0.550~5! 0.33~1! 1.765~10!

d53 0.51~1! 0.09~2! 0.27~1! 0.22~1! 1.90~5!

d54 0 0 0 0 2
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